Domain of the definition of function
$f(x) = \sqrt {\frac{{4 - {x^2}}}{{\left[ x \right] + 2}}} $ is $($ where $[.] \rightarrow G.I.F.)$
$( - \infty ,2)\, \cup \,[ - 1,2]$
$[0,2]$
$[-1,2]$
$(0,2)$
If $f(x) = \log \left[ {\frac{{1 + x}}{{1 - x}}} \right]$, then $f\left[ {\frac{{2x}}{{1 + {x^2}}}} \right]$ is equal to
The function $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, where $p > 0,\;q > 0,\;r > 0$ assumes its minimum value only at one point, if
If $f({x_1}) - f({x_2}) = f\left( {\frac{{{x_1} - {x_2}}}{{1 - {x_1}{x_2}}}} \right)$ for ${x_1},{x_2} \in [ - 1,\,1]$, then $f(x)$ is
The domain of the function $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ is
For a suitably chosen real constant $a$, let a function, $f: R-\{-a\} \rightarrow R$ be defined by $f(x)=\frac{a-x}{a+x} .$ Further suppose that for any real number $x \neq- a$ and $f( x ) \neq- a ,( fof )( x )= x .$ Then $f\left(-\frac{1}{2}\right)$ is equal to