If $f(x) = \log \left[ {\frac{{1 + x}}{{1 - x}}} \right]$, then $f\left[ {\frac{{2x}}{{1 + {x^2}}}} \right]$ is equal to
${[f(x)]^2}$
${[f(x)]^3}$
$2f(x)$
$3f(x)$
Let $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ and $m(b)$ the minimum value of $f(x)$ for a given $b$. As $b$ varies, the range of $m(b)$ is
Let $\phi (x) = (x) + {2^{\log _x^3}} - {3^{\log _x^2}}$ then
The maximum value of function $f(x) = \int\limits_0^1 {t\,\sin \,\left( {x + \pi t} \right)} dt,\,x \in \,R$ is
Prove that the Greatest Integer Function $f: R \rightarrow R ,$ given by $f(x)=[x]$, is neither one-one nor onto, where $[x]$ denotes the greatest integer less than or equal to $x$.
The number of functions $f$, from the set$A=\left\{x \in N: x^{2}-10 x+9 \leq 0\right\}$ to the set $B=\left\{n^{2}: n \in N\right\}$ such that $f(x) \leq(x-3)^{2}+1$, for every $x \in A$, is.