The domain of the function $f(x) = {\sin ^{ - 1}}[{\log _2}(x/2)]$ is

  • A

    $[1, 4]$

  • B

    $[-4, 1]$

  • C

    $[-1, 4]$

  • D

    None of these

Similar Questions

Let $R$ be the set of all real numbers and let $f$ be a function from $R$ to $R$ such that $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$, for all $x \in R$. Then $2 f(0)+3 f(1)$ is equal to

  • [KVPY 2014]

Consider the identity function $I _{ N }: N \rightarrow N$ defined as $I _{ N }$ $(x)=x$  $\forall $  $x \in N$ Show that although $I _{ N }$ is onto but $I _{ N }+ I _{ N }:$  $ N \rightarrow N$ defined as $\left(I_{N}+I_{N}\right)(x)=$ $I_{N}(x)+I_{N}(x)$ $=x+x=2 x$ is not onto.

Show that the function $f: N \rightarrow N$ given by $f(x)=2 x,$ is one-one but not onto.

The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is

  • [JEE MAIN 2019]

Range of the function $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ is