Domain of the function $f(x)\,=\,\frac{1}{{\sqrt {(x + 1)({e^x} - 1)(x - 4)(x + 5)(x - 6)} }}$

  • A

    $( - \infty , - 5) \cup ( - 1,4) \cup (6,8)$

  • B

    $( - \infty , - 5) \cup ( - 1,0) \cup (0,4) \cup (6,\infty )$

  • C

    $( - 5, - 1) \cup (0,4) \cup (6,\infty )$

  • D

    $( - \infty , - 5) \cup ( - 1,4) \cup [6,\infty )$

Similar Questions

The largest interval lying in $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ for which the function, $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$  is defined is

  • [AIEEE 2007]

If $P(S)$ denotes the set of all subsets of a given set $S, $ then the number of one-to-one functions from the set $S = \{ 1, 2, 3\}$ to the set $P(S)$ is

  • [AIEEE 2012]

Which of the following is function

Greatest value of the function, $f(x) =  - 1 + \frac{2}{{{2^x}^2 + 1}}$ is 

Show that the function $f: R \rightarrow R$ defined as $f(x)=x^{2},$ is neither one-one nor onto.