Let the sets $A$ and $B$ denote the domain and range respectively of the function $f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$ where $\lceil x \rceil$ denotes the smallest integer greater than or equal to $x$. Then among the statements

$( S 1): A \cap B =(1, \infty)-N$ and

$( S 2): A \cup B=(1, \infty)$

  • [JEE MAIN 2023]
  • A

    only $(S1)$ is true

  • B

    both $(S1)$ and $(S2)$ are true

  • C

    neither $(S1)$ nor $(S2)$ is true

  • D

    only $(S2)$ is true

Similar Questions

If $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 +  .... + \infty } } } } \right)$ then 

The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is

  • [JEE MAIN 2019]

Let $f$ be a function satisfying $f(xy) = \frac{f(x)}{y}$ for all positive real numbers $x$ and $y.$ If $ f(30) = 20,$ then the value of $f(40)$ is-

Domain of function $f(x) = {\sin ^{ - 1}}5x$ is

If $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$, for every real numbers. then the minimum value of $f$