Dot product of two mutual perpendicular vector is

  • A

    $0$

  • B

    $1$

  • C

    $\infty$

  • D

    None of these

Similar Questions

For what value of $x$, will the two vectors $A =2 \hat{ i }+2 \hat{ j }-x \hat{ k }$ and $B =2 \hat{ i }-\hat{ j }-3 \hat{ k }$ are perpendicular to each other?

Consider two vectors ${\overrightarrow F _1} = 2\hat i + 5\hat k$ and ${\overrightarrow F _2} = 3\hat j + 4\hat k.$ The magnitude of the scalar product of these vectors is

The components of $\vec a = 2\hat i + 3\hat j$ along the direction of vector $\left( {\hat i + \hat j} \right)$ is

Two vectors $P = 2\hat i + b\hat j + 2\hat k$ and $Q = \hat i + \hat j + \hat k$ will be parallel if $b=$ ........

The area of the parallelogram represented by the vectors $\overrightarrow A = 2\hat i + 3\hat j$ and $\overrightarrow B = \hat i + 4\hat j$ is.......$units$