During Kinetic study of reaction $2 A+B \rightarrow C+D$, the following results were obtained :
$A[M]$ | $B[M]$ |
initial rate of formation of $D$ |
|
$i$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
$ii$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
$ii$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
$iv$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
Based on above data, overall order of the reaction is $\qquad$
$2$
$3$
$4$
$5$
The unit of rate constant for a zero order reaction is
For a chemical reaction....can never be a fraction
Following is the rate constant of reaction what is the overall order of reaction ?
$(a)$ $6.66 \times 10^{-3} \,s ^{-1}$
$(b)$ $4.5 \times 10^{-2} \,mol ^{-1} \,L \,s ^{-1}$
Consider following two reaction,
$A \to {\text{Product ;}}\,\, - \frac{{d[A]}}{{dt}} = {k_1}{[A]^o}$
$B \to {\text{Product ;}}\,\, - \frac{{d[B]}}{{dt}} = {k_2}{[B]}$
Units of $k_1$ and $k_2$ are expressed in terms of molarity $(M)$ and time $(sec^{-1})$ as
The unit of rate constant of second order reaction is usually expressed as