Electric field in a region is uniform and is given by $\vec{E}=a \hat{i}+b \hat{j}+c \hat{k}$. Electric flux associated with a surface of area $\vec{A}=\pi R^2 \hat{i}$ is

  • A

    $a \pi R^2$

  • B

    $3 a \pi R^2$

  • C

    $2 a b R$

  • D

    $a c R$

Similar Questions

What will be the total flux through the faces of the cube as in figure with side of length $'a'$ if a charge $'q'$ is placed at ?

$(a)$ $C$ $:$ centre of a face of the cube.

$(b)$ $D$ $:$ midpoint of $B$ and $C$.

A hollow cylinder has a charge $q$ coulomb within it. If $\phi$ is the electric flux in units of $volt-meter$ associated with the curved surface $B,$ the flux linked with the plane surface $A$ in units of $V-m$ will be

  • [AIIMS 2008]

The electric field in a region is radially outward with magnitude $E = A{\gamma _0}$. The charge contained in a sphere of radius ${\gamma _0}$ centered at the origin is

Electric lines of force about negative point charge are

Let the electrostatic field $E$ at distance $r$ from a point charge $q$ not be an inverse square but instead an inverse cubic, e.g. $E =k \cdot \frac{q}{r^{3}} \hat{ r }$, here $k$ is a constant.

Consider the following two statements:

$(I)$ Flux through a spherical surface enclosing the charge is $\phi=q_{\text {enclosed }} / \varepsilon_{0}$.

$(II)$ A charge placed inside uniformly charged shell will experience a force.

Which of the above statements are valid?

  • [KVPY 2017]