Electric field in a region is uniform and is given by $\vec{E}=a \hat{i}+b \hat{j}+c \hat{k}$. Electric flux associated with a surface of area $\vec{A}=\pi R^2 \hat{i}$ is
$a \pi R^2$
$3 a \pi R^2$
$2 a b R$
$a c R$
What will be the total flux through the faces of the cube as in figure with side of length $'a'$ if a charge $'q'$ is placed at ?
$(a)$ $C$ $:$ centre of a face of the cube.
$(b)$ $D$ $:$ midpoint of $B$ and $C$.
A hollow cylinder has a charge $q$ coulomb within it. If $\phi$ is the electric flux in units of $volt-meter$ associated with the curved surface $B,$ the flux linked with the plane surface $A$ in units of $V-m$ will be
The electric field in a region is radially outward with magnitude $E = A{\gamma _0}$. The charge contained in a sphere of radius ${\gamma _0}$ centered at the origin is
Electric lines of force about negative point charge are
Let the electrostatic field $E$ at distance $r$ from a point charge $q$ not be an inverse square but instead an inverse cubic, e.g. $E =k \cdot \frac{q}{r^{3}} \hat{ r }$, here $k$ is a constant.
Consider the following two statements:
$(I)$ Flux through a spherical surface enclosing the charge is $\phi=q_{\text {enclosed }} / \varepsilon_{0}$.
$(II)$ A charge placed inside uniformly charged shell will experience a force.
Which of the above statements are valid?