Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

Equation of the normal to the hyperbola $\frac{{{x^2}}}{{25}} - \frac{{{y^2}}}{{16}} = 1$ perpendicular to the line $2x + y = 1$ is

A

$\sqrt {21} \left( {x - 2y} \right) = 41$

B

$x - 2y =1$

C

$\sqrt {41} \left( {x - 2y} \right) = 41$

D

$\sqrt {21} \left( {x - 2y} \right) = 21$

Solution

Equation of normal to the hyperbola at the point

$(5 \sec \theta, 4 \tan \theta)$ is

$5 \mathrm{x} \cos \theta+4 \mathrm{y} \cot \theta=25+16$      …….$(i)$

This line is perpendicular to the line $2 x+y=1$

$\therefore $ $\mathrm{m}_{1} \mathrm{m}_{2}=-1$

$\Rightarrow\left(\frac{-5 \cos \theta}{4 \cot \theta}\right)(-2)=-1$

$\Rightarrow$ $\sin \theta=-\frac{2}{5}$

$\therefore $ $\cos \theta=\sqrt{1-\frac{4}{25}}=\mp \frac{\sqrt{21}}{5}$

and $\cot \theta=\mp \frac{\sqrt{21}}{2}$

From Eq. $(i),$

${5 x \frac{\sqrt{21}}{5}-\frac{4 y \sqrt{21}}{2}=41} $

$\Rightarrow$ ${\sqrt{21}(x-2 y)=41}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.