If $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$ are the eccentricities of the ellipse, $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ and the hyperbola, $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ respectively and $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ is a point on the ellipse, $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ then $\mathrm{k}$ is equal to
$15$
$14$
$17$
$16$
If the line $x-1=0$, is a directrix of the hyperbola $kx ^{2}- y ^{2}=6$, then the hyperbola passes through the point.
The eccentricity of a hyperbola passing through the points $(3, 0)$, $(3\sqrt 2 ,\;2)$ will be
Let a line $L: 2 x+y=k, k\,>\,0$ be a tangent to the hyperbola $x^{2}-y^{2}=3 .$ If $L$ is also a tangent to the parabola $y^{2}=\alpha x$, then $\alpha$ is equal to :
At the point of intersection of the rectangular hyperbola $ xy = c^2 $ and the parabola $y^2 = 4ax$ tangents to the rectangular hyperbola and the parabola make an angle $ \theta $ and $ \phi $ respectively with the axis of $X$, then
The equation of the hyperbola whose conjugate axis is $5$ and the distance between the foci is $13$, is