If $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$ are the eccentricities of the ellipse, $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ and the hyperbola, $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ respectively and $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ is a point on the ellipse, $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ then $\mathrm{k}$ is equal to
$15$
$14$
$17$
$16$
If the eccentricity of a hyperbola $\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{{b^2}}} = 1,$ which passes through $(K, 2),$ is $\frac{{\sqrt {13} }}{3},$ then the value of $K^2$ is
Consider a branch of the hyperbola $x^2-2 y^2-2 \sqrt{2} x-4 \sqrt{2} y-6=0$ with vertex at the point $A$. Let $B$ be one of the end points of its latus rectum. If $\mathrm{C}$ is the focus of the hyperbola nearest to the point $\mathrm{A}$, then the area of the triangle $\mathrm{ABC}$ is
The condition that the straight line $lx + my = n$ may be a normal to the hyperbola ${b^2}{x^2} - {a^2}{y^2} = {a^2}{b^2}$ is given by
Find the equation of the hyperbola satisfying the give conditions: Foci $(0,\,\pm 13),$ the conjugate axis is of length $24.$
The equation of a hyperbola, whose foci are $(5, 0)$ and $(-5, 0)$ and the length of whose conjugate axis is $8$, is