Evaluate the determinants

$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right]$

By expanding along the first row, we have:

$|A|=0\left|\begin{array}{ll}0 & -3 \\ 3 & 0\end{array}\right|-1\left|\begin{array}{ll}-1 & -3 \\ -2 & 0\end{array}\right|+2\left|\begin{array}{ll}-1 & 0 \\ -2 & 3\end{array}\right|$

$=0-1(0-6)+2(-3-0)$

$=-1(-6)+2(-3)$

$=6-6=0$

Similar Questions

Three digit numbers $x17, 3y6$ and $12z$ where $x, y, z$ are integers from $0$ to $9$, are divisible by a fixed constant $k$. Then the determinant $\left| {\,\begin{array}{*{20}{c}}x&3&1\\7&6&z\\1&y&2\end{array}\,} \right|$ + $48$ must be divisible by

The determinant $\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|$ is equal to zero if $a,b,c$ are in

If $AB = A$ and $BA = B$, then

The existence of the unique solution of the system $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ depends on

In a square matrix $A$ of order $3, a_{i i}'s$ are the sum of the roots of the equation $x^2 - (a + b)x + ab= 0$; $a_{i , i + 1}'s$ are the product of the roots, $a_{i , i - 1}'s$ are all unity and the rest of the elements are all zero. The value of the det. $(A)$ is equal to