Evaluate the determinants
$\left|\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right|$
Let $A=\left[\begin{array}{ccc}0 & 1 & 2 \\ -1 & 0 & -3 \\ -2 & 3 & 0\end{array}\right]$
By expanding along the first row, we have:
$|A|=0\left|\begin{array}{ll}0 & -3 \\ 3 & 0\end{array}\right|-1\left|\begin{array}{ll}-1 & -3 \\ -2 & 0\end{array}\right|+2\left|\begin{array}{ll}-1 & 0 \\ -2 & 3\end{array}\right|$
$=0-1(0-6)+2(-3-0)$
$=-1(-6)+2(-3)$
$=6-6=0$
Three digit numbers $x17, 3y6$ and $12z$ where $x, y, z$ are integers from $0$ to $9$, are divisible by a fixed constant $k$. Then the determinant $\left| {\,\begin{array}{*{20}{c}}x&3&1\\7&6&z\\1&y&2\end{array}\,} \right|$ + $48$ must be divisible by
The determinant $\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|$ is equal to zero if $a,b,c$ are in
The existence of the unique solution of the system $x + y + z = \lambda ,$ $5x - y + \mu z = 10$, $2x + 3y - z = 6$ depends on