Let $\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}$. Then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{ - 1 - {\omega ^2}}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^4}}\end{array}\,} \right|$ is
$3\omega $
$3\omega (\omega - 1)$
$3{\omega ^2}$
$3\omega (1 - \omega )$
The following system of linear equations $2 x+3 y+2 z=9$ ; $3 x+2 y+2 z=9$ ;$x-y+4 z=8$
Consider the system of linear equation $x+y+z=$ $4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$, where $\lambda, \mu \in R$. Which one of the following statements is $NOT$ correct?
Let $N$ denote the number that turns up when a fair die is rolled. If the probability that the system of equations
$x+y+z=1$ ; $2 x+N y+2 z=2$ ; $3 x+3 y+N z=3$
has unique solution is $\frac{k}{6}$, then the sum of value of $k$ and all possible values of $N$ is
For the system of linear equations
$2 x+4 y+2 a z=b$
$x+2 y+3 z=4$
$2 x-5 y+2 z=8$
which of the following is NOT correct?
Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ and $|2 A|^3=2^{21}$ where $\alpha, \beta \in Z$, Then a value of $\alpha $ is