Expand the following:
$(-x+2 y-3 z)^{2}$
$(-x+2 y-3 z)^{2}=\{(-x)+2 y+(-3 z)\}^{2}$
$=(-x)^{2}+(2 y)^{2}+(-3 z)^{2}+2(-x)(2 y)+2(2 y)(-3 z)+2(-3 y z)(-x)$
By acute division, find the quotient and the remainder when the first polynomial is divided by the second polynomial: $x^{4}+1 ; x+1$
The value of the polynomial $5 x-4 x^{2}+3,$ when $x=-1$ is
Find the value of the polynomial $x^{2}-7 x+12$ at.
$x=4$
$x=1$
Evaluate using suitable identities : $(998)^{3}$
Confusing about what to choose? Our team will schedule a demo shortly.