Expand:- $(x+3 y-5 z)^{2}$
$(x+3 y-5 z)^{2}$
$=(x)^{2}+(3 y)^{2}+(-5 z)^{2}+2(x)(3 y)$$+2(3 y)(-5 z)+2(-5 z)(x)$
$=x^{2}+9 y^{2}+25 z^{2}+6 x y-30 y z-10 z x$
Factors of $x^{2}-23 x+120$ are………
For $p(x)=x^{3}+9 x^{2}+26 x+24$ $p(-2)=\ldots \ldots \ldots$
Simplify $(2 x-5 y)^{3}-(2 x+5 y)^{3}$
If $x^{2}-8 x-20=(x+a)(x+b),$ then $a b=\ldots \ldots \ldots$
Verify whether the following are True or False:
$-3$ is a zero of $x-3$
Confusing about what to choose? Our team will schedule a demo shortly.