Factors of $x^{2}-23 x+120$ are.........
$(x-20)(x-6)$
$(x-40)(x-3)$
$(x-15)(x-8)$
$(x-24)(x-5)$
On dividing $16 x^{2}-24 x+9$ by $4 x-3,$ find the remainder.
If $x+2 a$ is a factor of $x^{5}-4 a^{2} x^{3}+2 x+2 a+3,$ find $a$
Factorise :
$x^{3}-6 x^{2}+11 x-6$
The degree of polynomial $7 x^{5}-4 x^{4}+2\left(x^{3}\right)^{2}-x^{2}+35$ is $\ldots \ldots \ldots$
Expand
$(3 x+7)(-3 x+7)$
Confusing about what to choose? Our team will schedule a demo shortly.