Explain vector form of Coulomb’s law and its importance. Write some important points for vector form of Coulomb’s law.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Suppose, position vectors of $q_{1}$ and $q_{2}$ are $r_{1}$ and $r_{2}$ respectively as shown in figure (a).

Let, force acting on $q_{1}$ by $q_{2}$ is $\vec{F}_{12}$ and force on $q_{2}$ by $q_{1}$ is $\vec{F}_{21} \cdot$

If $1$and $2$ numbers are given to $q_{1}$ and $q_{2}$, then $\overrightarrow{r_{21}}$ is position vector from 1 to 2 and $\overrightarrow{r_{12}}$ is

position vector from $2$ to $1$ .

By using triangle method for vector addition,

$\overrightarrow{r_{1}}+\overrightarrow{r_{21}}=\overrightarrow{r_{2}}$

$\therefore \overrightarrow{r_{21}}=\overrightarrow{r_{2}}-\overrightarrow{r_{1}}$ and $\overrightarrow{r_{12}}=\overrightarrow{r_{1}}-\overrightarrow{r_{2}}=-\overrightarrow{r_{21}}$

and $\left|\overrightarrow{r_{12}}\right|=r_{12}$ also $\left|\overrightarrow{r_{21}}\right|=r_{21}$

$\therefore \vec{r}_{12}=\frac{r_{12}}{r_{12}}$ and $\hat{r}_{21}=\frac{\overrightarrow{r_{21}}}{r_{21}}$

Force acting on $q_{2}$ by $q_{1}$ '

$\overrightarrow{\mathrm{F}_{21}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{21}^{2}} \cdot \hat{r}_{21}$ and

Force acting on $q_{1}$ by $q_{2}$ '

$\overrightarrow{\mathrm{F}_{12}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{12}^{2}} \cdot \hat{r}_{12}$

but $\hat{r}_{12}=-\hat{r}_{21}$,

$\overrightarrow{\mathrm{F}_{21}}=-\overrightarrow{\mathrm{F}_{12}}$

897-s101

Similar Questions

Force between two identical spheres charged with same charge is $F$. If $50\%$ charge of one sphere is transferred to second sphere then new force will be

Four charges are placed at the circumference of the dial of a clock as shown in figure. If the clock has only hour hand, then the resultant force on a positive charge $q_0$ placed at the centre, points in the direction which shows the time as 

The ratio of electrostatic and gravitational forces acting between electron and proton separated by a distance $5 \times {10^{ - 11}}\,m,$ will be (Charge on electron $=$ $1.6 \times 10^{-19}$ $C$, mass of electron = $ 9.1 \times 10^{-31}$ $kg$, mass of proton = $1.6 \times {10^{ - 27}}\,kg,$ $\,G = 6.7 \times {10^{ - 11}}\,N{m^2}/k{g^2})$

Two small spherical balls each carrying a charge $Q = 10\,\mu C$ ($10$ micro-coulomb) are suspended by two insulating threads of equal lengths $1\,m$ each, from a point fixed in the ceiling. It is found that in equilibrium threads are separated by an angle ${60^o}$ between them, as shown in the figure. What is the tension in the threads......$N$ (Given: $\frac{1}{{(4\pi {\varepsilon _0})}} = 9 \times {10^9}\,Nm/{C^2}$)

By using Coulomb’s law, define unit charge.