Explain vector form of Coulomb’s law and its importance. Write some important points for vector form of Coulomb’s law.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Suppose, position vectors of $q_{1}$ and $q_{2}$ are $r_{1}$ and $r_{2}$ respectively as shown in figure (a).

Let, force acting on $q_{1}$ by $q_{2}$ is $\vec{F}_{12}$ and force on $q_{2}$ by $q_{1}$ is $\vec{F}_{21} \cdot$

If $1$and $2$ numbers are given to $q_{1}$ and $q_{2}$, then $\overrightarrow{r_{21}}$ is position vector from 1 to 2 and $\overrightarrow{r_{12}}$ is

position vector from $2$ to $1$ .

By using triangle method for vector addition,

$\overrightarrow{r_{1}}+\overrightarrow{r_{21}}=\overrightarrow{r_{2}}$

$\therefore \overrightarrow{r_{21}}=\overrightarrow{r_{2}}-\overrightarrow{r_{1}}$ and $\overrightarrow{r_{12}}=\overrightarrow{r_{1}}-\overrightarrow{r_{2}}=-\overrightarrow{r_{21}}$

and $\left|\overrightarrow{r_{12}}\right|=r_{12}$ also $\left|\overrightarrow{r_{21}}\right|=r_{21}$

$\therefore \vec{r}_{12}=\frac{r_{12}}{r_{12}}$ and $\hat{r}_{21}=\frac{\overrightarrow{r_{21}}}{r_{21}}$

Force acting on $q_{2}$ by $q_{1}$ '

$\overrightarrow{\mathrm{F}_{21}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{21}^{2}} \cdot \hat{r}_{21}$ and

Force acting on $q_{1}$ by $q_{2}$ '

$\overrightarrow{\mathrm{F}_{12}}=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q_{1} q_{2}}{r_{12}^{2}} \cdot \hat{r}_{12}$

but $\hat{r}_{12}=-\hat{r}_{21}$,

$\overrightarrow{\mathrm{F}_{21}}=-\overrightarrow{\mathrm{F}_{12}}$

897-s101

Similar Questions

Two charges each of magnitude $Q$ are fixed at $2a$ distance apart. A third charge ($-q$ of mass $'m'$) is placed at the mid point of the two charges; now $-q$ charge is slightly displaced perpendicular to the line joining the charges then find its time period

In a medium, the force of attraction between two point charges, distance $d$ apart, is $F$. What distance apart should these point charges be kept in the same medium, so that the force between them becomes $16\, F$ ?

The electrostatic force of interaction between an uniformly charged rod having total charge $Q$ and length $L$ and a point charge $q$ as shown in figure is

Two point charges $A$ and $B$, having charges $+Q$ and $- Q$ respectively, are placed at certain distance apart and force acting between them is $\mathrm{F}$. If $25 \%$ charge of $A$ is transferred to $B$, then force between the charges becomes

  • [NEET 2019]

Force between $A$ and $B$ is $F$. If $75\%$ charge of $A$ is transferred to $B$ then force between $A$ and $B$ is