Explain which properties are necessary to understand the speed of mechanical waves.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Once displacement is passed through the mean position, restoring force and elasticity are required for string particles to come back to their original position.

Oscillated particle is displacement depends on the inertia of medium.

Thus, for propagation of mechanical waves, elasticity and inertia are needful.

Thus, by using dimensional analysis based on two properties wave speed can be obtained.

Similar Questions

A steel wire has a length of $12$ $m$ and a mass of $2.10$ $kg$. What will be the speed of a transverse wave on this wire when a tension of $2.06{\rm{ }} \times {10^4}$ $\mathrm{N}$ is applied ?

A sound is produced by plucking a string in a musical instrument, then

A horizontal stretched string, fixed at two ends, is vibrating in its fifth harmonic according to the equation, $y(x$, $t )=(0.01 \ m ) \sin \left[\left(62.8 \ m ^{-1}\right) x \right] \cos \left[\left(628 s ^{-1}\right) t \right]$. Assuming $\pi=3.14$, the correct statement$(s)$ is (are) :

$(A)$ The number of nodes is $5$ .

$(B)$ The length of the string is $0.25 \ m$.

$(C)$ The maximum displacement of the midpoint of the string its equilibrium position is $0.01 \ m$.

$(D)$ The fundamental frequency is $100 \ Hz$.

  • [IIT 2013]

A pulse is generated at lower end of a hanging rope of uniform density and length $L$. The speed of the pulse when it reaches the mid point of rope is ......

A wire of density $9 \times 10^{-3} \,kg\, cm ^{-3}$ is stretched between two clamps $1\, m$ apart. The resulting strain in the wire is $4.9 \times 10^{-4}$. The lowest frequency of the transverse vibrations in the wire is......$HZ$

(Young's modulus of wire $Y =9 \times 10^{10}\, Nm ^{-2}$ ), (to the nearest integer),

  • [JEE MAIN 2020]