8.Mechanical Properties of Solids
easy

દ્રવ્યોની સ્થિતિસ્થાપક વર્તણૂકનો ઉપયોગ સમજાવતું ક્રેઈનનું ઉદાહરણ સમજાવો. 

Option A
Option B
Option C
Option D

Solution

બધીજ એન્જિનિયરિંગ ડિઝાઈન માટે દ્રવ્યોની સ્થિતિસ્થાપક વર્ત્યૂક અગત્યનો ભાગ ભજવે છે. આ માટે નીચેનું ક્રેઈનનું ઉદાહરણ જેઈએ.

ભારે બોજને ઉપાડવા કે એક સ્થળેથી બીજા સ્થળે લઈ જવા વપરાતી ક્રેઈનમાં જાડાં ધાતુના દોરડાને ભારે બોજ સાથે બાંધવામાં આવે છે ત્યારે દોરડામાં કંઈક પ્રતિબળ ઉત્પન્ન થાય છે.

ધારો કે, એક ક્રેઈનની બોજ ઉંચકવાની ક્ષમતા $10$ મેટ્રિક ટન એટલે $1000\,kg$ ની હોય, તો દોરડાની જાડાઈ કેટલી રાખવી જોઈએ ?

આ માટે દોરડા વડે વધારેમાં વધારે એટલો જ બોજ ઉંચકી શકાય અથવા આપેલા બોજને વધારેમાં વધારે એટલી પ્રવેગત કરી શકાય કે જેથી તે સ્થિતિસ્થાપક હદને વટાવી ન જાય.

આનો અર્થ એવો થાય કે, દોરડામાં ઉદભવતા આધિન પ્રબળતા $S _{y}$ નું મૂલ્ય સ્થિતિસ્થાપક હદના મૂલ્ય કરતાં ઓછું હોય. ધારો કે, નરમ સ્ટીલના દોરડાના આડછેદનું ઓછામાં ઓછું ક્ષેત્રફળ $A$ અને નરમ સ્ટીલની પ્રબળતા

$\left( S _{y}\right)=300 \times 10^{6} Nm ^{-2}$ છે.

$\therefore A\geq \frac{ W }{ S _{y}}$

$\geq \frac{ Mg }{ S _{y}}$

$\geq \frac{10^{4} \times 10}{3 \times 10^{6}}$

$\therefore A\geq 3.3 \times 10^{-4} m ^{2}$

`જો $g=3.1 \pi ms ^{-2}$ અને $A =\pi r^{2}$ લઈએ, તો $A =\frac{ Mg }{ S _{y}}$ પરથી $\left[\because g=9.8=3.1 \times \pi ms ^{-2}\right]$

$\pi r^{2}=\frac{10^{4} \times 3.1 \times \pi}{300 \times 10^{6}}$

$\therefore r^{2}=\frac{3.1}{3} \times 10^{-4}$

$\therefore r^{2}=1.033 \times 10^{-4}$

$\therefore r=1.06 \times 10^{-2} m$

$\therefore r \approx 1 cm$

સામાન્ય રીતે સુરક્ષાના હેતુથી બોજના $10$ ગણા જેટલા બોજને ખેંચવા માટે દોરું લેવું હોય, તો લગભગ $3\,cm$ ત્રિજ્યાવાળું દોરડું લેવાનું સૂચવવામાં આવે છે.

$3\,cm$ ત્રિજ્યાવાળું દોરડું જાડો સળિયો કહેવાય. પણ આવું દોરડું બનાવવા ધણાં બધા પાતળા તારને વળ ચઢાવીને અને ગૂંથીને $3\,cm$ ત્રિજ્યાવાળું દોરંડુ બનાવવામાં આવે છે.

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.