2. Polynomials
hard

અવયવ પાડો :   $2 y^{3}+y^{2}-2 y-1$

Option A
Option B
Option C
Option D

Solution

આપણે પ્રયત્નો દ્વારા જાણીએ કે $p(1)=0$ છે કે $p(-1)=0$ છે.

$p(y) =2 y^{3}+y^{2}-2 y-1 $

$\therefore p(1) =2(1)^{3}+(1)^{2}-2(1)-1$

$=2(1)+(1)-2-1 $

$=2+1-2-1 $

$\therefore p(1) =0$

$ p(y) =2 y^{3}+y^{2}-2 y-1 $

$\therefore p(-1) =2(-1)^{3}+(-1)^{2}-2(-1)-1 $

$=2(-1)+(1)+2-1 $

$=-2+1+2-1$

$\therefore p(-1) =0$

$\therefore  $ અવયવ પ્રમેયને આધારે $[y-(-1)]$ એટલે $y+ 1$ એ $p(x)$ નો અવયવ છે.

$\therefore  $ અવયવ પ્રમેયને આધારે $y-1$ એ $p(y)$ નો અવયવ છે.

$\frac{2 y^{3}+y^{2}-2 y-1}{y-1}=2 y^{2}+3 y+1$

$\therefore 2 y^{3}+y^{2}-2 y-1 =(y-1)\left(2 y^{2}+3 y+1\right) $

$\left.=(y-1)\left[2 y^{2}+2 y+y+1\right)\right] $

$=(y-1)[2 y(y+1)+1(y+1)]$

$2 y^{3}+y^{2}-2 y-1 =(y-1)(y+1)(2 y+1)$

$\frac{2 y^{3}+y^{2}-2 y-1}{y+1}=2 y^{2}-y-1$

$\therefore 2 y^{3}+y^{2}-2 y-1 =(y+1)\left(2 y^{2}-y-1\right) $

$\left.=(y+1)\left[2 y^{2}-2 y+y-1\right)\right]$

$=(y+1)[2 y(y-1)+1(y-1)] $

$2 y^{3}+y^{2}-2 y-1=(y+1)(y-1)(2 y+1)$

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.