- Home
- Standard 9
- Mathematics
2. Polynomials
medium
Factorise $: x^{3}-x^{2}-17 x-15$
Option A
Option B
Option C
Option D
Solution
The sum of the coefficients of odd power
terms of $x=1-17=-16$.
The sum of the coefficients of the even power
terms of $x=-1-15=-16$.
Hence, $(x+1)$ is a factor of $p(x)$
$x^{3}-x^{2}-17 x-15$
$=\underline{x^{3}+x^{2}}-\underline{2 x^{2}-2 x}-\underline{15 x-15}$
[Splitting the terms to get $x+1$ as a factor]
$=x^{2}(x+1)-2 x(x+1)-15(x+1)$
$=(x+1)\left(x^{2}-2 x-15\right)$
$=(x+1)\left(x^{2}-5 x+3 x-15\right)$
[By splitting the middle term]
$=(x+1)[x(x-5)+3(x-5)]$
$=(x+1)(x-5)(x+3)$
Standard 9
Mathematics