Factorise $: 4 x^{2}+4 x y-3 y^{2}$
$4 x^{2}+4 x y-3 y^{2}$
$=4 x^{2}+6 x y-2 x y-3 y^{2}$
$=2 x(2 x+3 y)-y(2 x+3 y)$
$=(2 x+3 y)(2 x-y)$
Factorise the following:
$9 x^{2}+4 y^{2}+16 z^{2}+12 x y-16 y z-24 x z$
By remainder Theorem find the remainder, when $p(x)$ is divided by $g(x),$ where
$p(x)=4 x^{3}-12 x^{2}+14 x-3, g(x)=2 x-1$
If $p(x)=x^{2}-4 x+3$ then, find the value of $p(2)-p(-1)+p\left(\frac{1}{2}\right)$
Factorise $: x^{3}-125$
Find the quotient and the remainder when $2 x^{2}-7 x-15$ is divided by
$2 x+3$
Confusing about what to choose? Our team will schedule a demo shortly.