- Home
- Standard 11
- Physics
Fill in the blank :
$1.$ The change of internal energy in cyclic process is ......
$2.$ The internal energy of gas is increased by ......
$3.$ An ideal gas at temperature $T_1$ is compressed to $32^{th}$ of its original volume, then its temperature $T_2$ will be ...... $(\gamma = 1.4)$
$4.$ The triple point of water is at ...... pressure and ...... temperature.
Solution
$1$ zero
$2$ adiabatic compression
$3$ For an adiabatic process,
$\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$
$\therefore \mathrm{T}_{2}=\mathrm{T}_{1}\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma-1}$
$=\mathrm{T}_{1}\left(\frac{\mathrm{V}_{1}}{\mathrm{~V}_{1}}\right)^{\gamma-1}=\mathrm{T}_{1}(32)^{1.4-1}$
$=\mathrm{T}_{1} \times\left(2^{5}\right)^{2 / 5}$
$=\mathrm{T}_{1} \times 4$
$=4 \mathrm{~T}_{1}$
$4$ $4.58 \mathrm{~mm} \mathrm{Hg}, 273.16 \mathrm{~K}$