3 and 4 .Determinants and Matrices
medium

જો $Y=\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]$ અને $2 X+Y=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$ હોય, તો $X$ શોધો. 

A

$\left[\begin{array}{cc}-1 & -1 \\ -2 & -1\end{array}\right]$

B

$\left[\begin{array}{cc}-1 & -1 \\ -2 & -1\end{array}\right]$

C

$\left[\begin{array}{cc}-1 & -1 \\ -2 & -1\end{array}\right]$

D

$\left[\begin{array}{cc}-1 & -1 \\ -2 & -1\end{array}\right]$

Solution

$2 X+Y=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$

$\Rightarrow 2 X+\left[\begin{array}{ll}3 & 2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ -3 & 2\end{array}\right]$

$ \Rightarrow 2X = $ $\left[ {\begin{array}{*{20}{c}}
  1&0 \\ 
  { – 3}&2 
\end{array}} \right] – \left[ {\begin{array}{*{20}{l}}
  3&2 \\ 
  1&4 
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{c}}
  {1 – 3}&{0 – 2} \\ 
  { – 3 – 1}&{2 – 4} 
\end{array}} \right]$

$\Rightarrow 2 X=\left[\begin{array}{ll}-2 & -2 \\ -4 & -2\end{array}\right]$

$\therefore \quad X=\frac{1}{2}\left[\begin{array}{ll}-2 & -2 \\ -4 & -2\end{array}\right]=\left[\begin{array}{ll}-1 & -1 \\ -2 & -1\end{array}\right]$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.