3 and 4 .Determinants and Matrices
medium

જો $A=\left[\begin{array}{rrr}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right],$ હોય, તો સાબિત કરો કે $A^{3}-23 A-40I=0$

Option A
Option B
Option C
Option D

Solution

We have ${A^2} = A \cdot A = $ $\left[ {\begin{array}{*{20}{r}}
  1&2&3 \\ 
  3&{ – 2}&1 \\ 
  4&2&1 
\end{array}} \right]$ $\left[ {\begin{array}{*{20}{r}}
  1&2&3 \\ 
  3&{ – 2}&1 \\ 
  4&2&1 
\end{array}} \right] = $ $\left[ {\begin{array}{*{20}{c}}
  {19}&4&8 \\ 
  1&{12}&8 \\ 
  {14}&6&{15} 
\end{array}} \right]$

So      ${A^3} = A{A^2} = $ $\left[ {\begin{array}{*{20}{r}}
  1&2&3 \\ 
  3&{ – 2}&1 \\ 
  4&2&1 
\end{array}} \right]$$\left[ {\begin{array}{*{20}{r}}
  {19}&4&8 \\ 
  1&{12}&8 \\ 
  {14}&6&{15} 
\end{array}} \right] = $ $\left[ {\begin{array}{*{20}{r}}
  {63}&{46}&{69} \\ 
  {69}&{ – 6}&{23} \\ 
  {92}&{46}&{63} 
\end{array}} \right]$

Now

$A^{3}-23 A-40 I=$ $\left[ {\begin{array}{*{20}{r}}
  {63}&{46}&{69} \\ 
  {69}&{ – 6}&{23} \\ 
  {92}&{46}&{63} 
\end{array}} \right]$ $-23\left[\begin{array}{rrr}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]-40\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$ = \left[ {\begin{array}{*{20}{c}}
  {63}&{46}&{69} \\ 
  {69}&{ – 6}&{23} \\ 
  {92}&{46}&{63} 
\end{array}} \right] + $ $\left[ {\begin{array}{*{20}{c}}
  { – 23}&{ – 46}&{ – 69} \\ 
  { – 69}&{46}&{ – 23} \\ 
  { – 92}&{ – 46}&{ – 23} 
\end{array}} \right] + $ $\left[ {\begin{array}{*{20}{c}}
  { – 40}&0&0 \\ 
  0&{ – 40}&0 \\ 
  0&0&{ – 40} 
\end{array}} \right]$

$=\left[\begin{array}{lll}63-23-40 & 46-46+0 & 69-69+0 \\ 69-69+0 & -6+46-40 & 23-23+0 \\ 92-92+0 & 46-46+0 & 63-23-40\end{array}\right]$

$=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=0$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.