10-1.Thermometry, Thermal Expansion and Calorimetry
medium

Find out the increase in moment of inertia $I$ of a uniform rod (coefficient of linear expansion a) about its perpendicular bisector when its temperature is slightly increased by $\Delta T$.

Option A
Option B
Option C
Option D

Solution

Suppose mass of rod is $\mathrm{M}$ and moment of inertia is $\mathrm{I}$. Moment of inertia of rod about perpendicular bisector,

$I=\frac{M l^{2}}{l^{2}}$

Increase in length due to increase in temperature $\Delta \mathrm{T}$, $\Delta l=l \alpha \Delta \mathrm{T}$

$\therefore$ Now, new moment of inertia of rod,

$\mathrm{I}^{\prime} =\frac{\mathrm{M}}{12}(l+\Delta l)^{2}$

$=\frac{\mathrm{M}}{12}\left(l^{2}+2 l \Delta l+\Delta l^{2}\right)$

But, $\Delta l$ is very small, $\Delta l^{2}$ is neglected.

$\mathrm{I}^{\prime}=\frac{\mathrm{M}}{12}\left(l^{2}+2 l \Delta l\right)$

$=\frac{\mathrm{M} l^{2}}{12}+\frac{\mathrm{M} l \Delta l}{6}$

$=\mathrm{I}+\frac{\mathrm{M} l \Delta l}{6}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.