Find out the surface charge density at the intersection of point $x =3\, m$ plane and $x$ -axis, in the region of uniform line charge of $8\, nC / m$ lying along the $z$ -axis in free space.
$0.424 \,n\,C m ^{-2}$
$47.88 \,C / m$
$0.07\, n\,C m ^{-2}$
$4.0\, n\,C m ^{-2}$
A charge $Q$ is fixed at a distance $d$ in front of an infinite metal plate. The lines of force are represented by
A cubical volume is bounded by the surfaces $x =0, x = a , y =0, y = a , z =0, z = a$. The electric field in the region is given by $\overrightarrow{ E }= E _0 \times \hat{ i }$. Where $E _0=4 \times 10^4 NC ^{-1} m ^{-1}$. If $a =2 cm$, the charge contained in the cubical volume is $Q \times 10^{-14} C$. The value of $Q$ is $...........$
Take $\left.\varepsilon_0=9 \times 10^{-12} C ^2 / Nm ^2\right)$
Is electric flux scalar or vector ?
A point charge causes an electric flux of $-1.0 \times 10^{3}\; N\;m ^{2} / C$ to pass through a spherical Gaussian surface of $10.0\; cm$ radius centred on the charge.
$(a)$ If the radius of the Gaussian surface were doubled, how much flux would pass through the surface?
$(b)$ What is the value of the point charge?
If the electric field intensity in a fair weather atmosphere is $100 \,V / m$, then the total charge on the earth's surface is ............ $C$ (radius of the earth is $6400\,km$ )