In a region of space the electric field is given by $\vec E = 8\hat i + 4\hat j+ 3\hat k$. The electric flux through a surface of area $100\, units$ in the $x-y$ plane is....$units$
$800$
$300$
$400$
$1500$
A point charge causes an electric flux of $-1.0 \times 10^{3}\; N\;m ^{2} / C$ to pass through a spherical Gaussian surface of $10.0\; cm$ radius centred on the charge.
$(a)$ If the radius of the Gaussian surface were doubled, how much flux would pass through the surface?
$(b)$ What is the value of the point charge?
A long cylindrical shell carries positive surface charge $\sigma$ in the upper half and negative surface charge $-\sigma$ in the lower half. The electric field lines around the cylinder will look like figure given in : (figures are schematic and not drawn to scale)
A point charge $ + q$ is placed at the centre of a cube of side $L$. The electric flux emerging from the cube is
Is electric flux scalar or vector ?
${q_1},\;{q_2},\;{q_3}$ and ${q_4}$ are point charges located at points as shown in the figure and $S$ is a spherical Gaussian surface of radius $R$. Which of the following is true according to the Gauss’s law