Find the equation of the equipotential for an infinite cylinder of radius ${{r_0}}$, carrying charge of linear density $\lambda $.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\int_{0}^{2 \pi r l} \overrightarrow{\mathrm{E}} \cdot d \overrightarrow{\mathrm{S}} =\frac{Q}{\epsilon_{0}}$$=\frac{\lambda l}{\epsilon_{0}}$

From Gauss's law,

$\left[ E _{r} S \cos \theta\right]_{0}^{2 \pi r l} =\frac{\lambda l}{\epsilon_{0}}$

$E _{r} \times 2 \pi r l =\frac{\lambda l}{\epsilon_{0}} \quad\left[\theta=0 \therefore \cos 0^{\circ}=1\right]$

$\therefore E _{r}=\frac{\lambda}{2 \pi \epsilon_{0} r}$

The radius of infinite cylinder is $r_{0}$,

$\mathrm{V}(r)-\mathrm{V}\left(r_{0}\right)=-\int_{r_{0}}^{r} \mathrm{E} d l$

$=-\frac{\lambda}{2 \pi \in_{0}} \log _{e} \frac{r}{r_{0}}=\frac{\lambda}{2 \pi \in_{0}} \log _{e} \frac{r_{0}}{r}$

$\text { because, } \int_{r_{0}}^{r} \frac{\lambda}{2 \pi \in_{0} r} d r=\frac{\lambda}{2 \pi \in_{0}} \int_{r_{0}}^{r} \frac{1}{r} d r$

$\quad \mathrm{~V}=\frac{\lambda}{2 \pi \in_{0}} \log _{e} \frac{r}{r_{0}}$

For given $V$,

$\log _{e} \frac{r}{r_{0}}=-\frac{2 \pi \epsilon_{0}}{\lambda} \times\left[\mathrm{V}(r)-\mathrm{V}\left(r_{0}\right)\right] r=r_{0} e^{-\frac{2 \pi \epsilon_{0}}{\lambda}\left[\mathrm{V}(r)-\mathrm{V}\left(r_{0}\right)\right]}$

$\therefore r=r_{0} e^{-\frac{2 \pi \epsilon_{0}}{\lambda}\left[\mathrm{V}(r)-\mathrm{V}\left(r_{0}\right)\right]}$

898-s166

Similar Questions

Consider two charged metallic spheres $S_{1}$ and $\mathrm{S}_{2}$ of radii $\mathrm{R}_{1}$ and $\mathrm{R}_{2},$ respectively. The electric $\left.\text { fields }\left.\mathrm{E}_{1} \text { (on } \mathrm{S}_{1}\right) \text { and } \mathrm{E}_{2} \text { (on } \mathrm{S}_{2}\right)$ on their surfaces are such that $\mathrm{E}_{1} / \mathrm{E}_{2}=\mathrm{R}_{1} / \mathrm{R}_{2} .$ Then the ratio $\left.\mathrm{V}_{1}\left(\mathrm{on}\; \mathrm{S}_{1}\right) / \mathrm{V}_{2} \text { (on } \mathrm{S}_{2}\right)$ of the electrostatic potentials on each sphere is 

  • [JEE MAIN 2020]

Figure shows three circular arcs, each of radius $R$ and total charge as indicated. The net electric potential at the centre of curvature is

Four electric charges $+q,+q, -q$ and $-q$ are placed at the comers of a square of side $2L$ (see figure). The electric potential at point $A,$ midway between the two charges $+q$ and $+q,$ is

  • [AIPMT 2011]

A uniform electric field of $20\, N/C$ exists along the $x$ -axis in a space. The potential  difference $(V_B -V_A)$ for the point $A(4\,m, 2\,m)$ and $B(6\,m, 5\,m)$ is.....$V$

Assume that an electric field $\vec E = 30{x^2}\hat i$ exists in space. Then the potential difference $V_A-V_O$ where $V_O$ is the potential at the origin and $V_A$ the potential at $x = 2\ m$ is....$V$

  • [JEE MAIN 2014]