સમગુણોત્તર શ્રેણીમાં નિર્દેશિત પદોનો સરવાળો શોધો : ${1, - a,{a^2}, - {a^3}, \ldots }$ પ્રથમ $n$ પદ
The given $G.P.$ is $1,-a, a^{2},-a^{3} \ldots \ldots$
Here, first term $=a_{1}=1$
Common ratio $=r=-a$
$S_{n}=\frac{a_{1}\left(1-r^{n}\right)}{1-r}$
$\therefore S_{n}=\frac{1\left[1-(-a)^{n}\right]}{1-(-a)}=\frac{\left[1-(-a)^{n}\right]}{1+a}$
સમગુણોત્તર શ્રેણીનું પ્રથમ પદ $a$ અને $n$ મું પદ છે. જો $n$ પદોનો ગુણાકાર $P$ હોય, તો સાબિત કરો કે $P^{2}=(a b)^{n}$
સમગુણોત્તર શ્રેણીના પ્રથમ ચાર પદોનો સરવાળો $\frac{65}{12}$ અને તેમના વ્યસ્તનો સરવાળો $\frac{65}{18}$ છે. જે સમગુણોત્તર શ્રેણીના પ્રથમ ત્રણ પદનો ગુણાકાર $1$ અને ત્રીજુ પદ $\alpha$ હોય, તો $2 \alpha \,=.......$
અનંત સમગુણોત્તર શ્રેણી સ્વીકારો તેનું પ્રથમ પદ $a $ અને સામાન્ય ગુણોત્તર $r$ છે. જો તેનો સરવાળો $4$ થાય અને બીજું પદ $3/4$ હોય, તો......
આપેલ સમગુણોત્તર શ્રેણી માટે $a=729$ અને $7$ મું પદ $64$ હોય તો $S$, શોધો.
શ્રેણી $\sqrt{3}, 3,3 \sqrt{3}, \ldots$ નું કેટલામું પદ $729$ થાય ?