- Home
- Standard 11
- Mathematics
જો $G_1 $ અને $G_2$ એ અનુક્રમે $ n_1 $ અને $n_2 $ કદની બે શ્રેણીઓના સમગુણોત્તર મધ્યકો હોય, અને $G$ એ તેમની સંયુક્ત શ્રેણીનો સમગુણોત્તર મધ્યક હોય તો $log G$ કોના બરાબર થાય છે ?
$log G_1 + log G_2$
$n_1 log G_1 + n_2log G_2$
$\frac{{\log {G_1}\,\, + \,\,\log \,{G_2}}}{{{n_1}\, + \,\,{n_2}}}$
$\frac{{{n_1}\log {G_1}\, + \,\,{n_2}\log {G_2}}}{{{n_1}\, + \,\,{n_2}}}$
Solution
ધારો કે ${{\text{x}}_{\text{1}}}\,{\text{,}}\,\,{{\text{x}}_{\text{2}}}\,{\text{,}}\,…….\,\,{{\text{x}}_{{{\text{n}}_{\text{1}}}}}$ અને ${{\text{y}}_{\text{1}}}\,{\text{,}}\,\,{{\text{y}}_{\text{2}}}\,{\text{,}}\,\,……\,\,{{\text{y}}_{{{\text{n}}_{\text{2}}}}}$ એ અનુક્રમે ${n_1}$ અને ${{\text{n}}_{\text{2}}}$ કદ ની શ્રેણી છે.
${{\text{G}}_{\text{1}}}\, = \,\,{({x_1}\,\, \times \,\,{x_2}\, \times \,\,…….\,\, \times \,\,{x_{{n_1}}})^{1/{n_1}}}\,……..\,\,(1)$
${G_2}\,\, = \,\,{({y_1}\,\, \times \,\,{y_2}\, \times \,\,…….\,\, \times \,\,{y_{{n_2}}})^{1/{n_2}}}\,……..\,\,(2)$
અને $G\,\, = \,\,{[({x_1}\,\, \times \,\,{x_2}\, \times \,\,……\,\, \times \,\,{x_{{n_1}}})\, \times \,({y_1}\,\, \times \,\,{y_2}\, \times \,\,….\,\,{y_{{n_2}}})]^{\frac{1}{{{n_1}\, + \,\,{n_2}}}}}$
$G\,\, = \,\,{(G_1^{{n_1}}\,\, \times \,\,G_2^{{n_2}})^{1/{n_1}\, + \,{n_2}}}\,\,\,\,\,[(1)\,\,\& \,\,(2)\,$ પરથી $]$
$\therefore \,\,\,\log \,\,G\,\, = \,\,\frac{{{n_1}\,\log \,{G_1}\,\, + \,\,{n_2}\,\log \,{G_2}}}{{{n_1}\, + \,\,{n_2}}}$