For a reaction $A \to B$, the rate of reaction quadrupled when the concentration of $A$ is doubled. The rate expression of the reaction is $r = K{(A)^n}$. when the value of $n$ is
$1$
$0$
$3$
$2$
Order of radioactive disintegration reaction is
The three experimental data for determine the differential rate of reaction $2 NO _{( g )}+ Cl _{2( g )} \rightarrow 2 NOCl_{( g )}$ at definate temperature. are given below.
$(a)$ Calculate order of reaction.
$(b)$ Calculate value of rate constant.
When the concentration of A in the reaction $A + B$ $\rightleftharpoons$ $AB$ is doubled, the rate of reaction will be
Which of the following is correct
Assertion : In rate law, unlike in the expression for equilibrium constants, the exponents for concentrations do not necessarily match the stoichiometric coefficients.
Reason : It is the mechanism and not the balanced chemical equation for the overall change that governs the reaction rate.