For a reaction $2NO(g) + C{l_2}(g)$ $\rightleftharpoons$ $\,2NOCl(g)$. When concentration of $C{l_2}$ is doubled, the rate of reaction becomes two times of the original. When the concentration of $NO$ is doubled the rate becomes four times. What is the order of the reaction
$1$
$2$
$3$
$4$
For a reaction of order $\mathrm{n}$, the unit of the rate constant is :
Consider the following reaction,
$2 H _2( g )+2 NO ( g ) \rightarrow N _2( g )+2 H _2 O ( g )$
which following the mechanism given below:
$2 NO ( g ) \underset{ k _{-1}}{\stackrel{ k _1}{\rightleftharpoons}} N _2 O _2( g )$
$N _2 O _2( g )+ H _2( g ) \stackrel{ k _2}{\rightleftharpoons} N _2 O ( g )+ H _2 O ( g )$
$N _2 O ( g )+ H _2( g ) \stackrel{ k _3}{\rightleftharpoons} N _2( g )+ H _2 O ( g )$
(fast equilibrium)
(slow reaction)
(fast reaction)
The order of the reaction is
In which of the following cases, does the reaction go farthest to completion
In the hydrolysis of an organic chloride in presence of large excess of water
$RCl + H_2O \longrightarrow ROH + HCl$
Assertion : The kinetics of the reaction -
$mA + nB + pC \to m' X + n 'Y + p 'Z$
obey the rate expression as $\frac{{dX}}{{dt}} = k{[A]^m}{[B]^n}$.
Reason : The rate of the reaction does not depend upon the concentration of $C$.