For a reaction taking place in three steps at same temperature, overall rate constant $\mathrm{K}=\frac{\mathrm{K}_1 \mathrm{~K}_2}{\mathrm{~K}_3}$. If $\mathrm{Ea}_1, \mathrm{Ea}_2$ and $\mathrm{Ea}_3$ are $40$,$50$ and $60 \mathrm{~kJ} / \mathrm{mol}$ respectively, the overall $\mathrm{Ea}$ is ________ $\mathrm{kJ} / \mathrm{mol}$.
$20$
$10$
$30$
$45$
For a reaction $2A + B \to $ Products, doubling the initial concentration of both the reactants increases the rate by a factor of $8$, and doubling the concentration of $+B$ alone doubles the rate. The rate law for the reaction is
For reaction
$Cl_2(aq) + H_2S(aq) \to S(s) + 2H^+(aq) + 2Cl^-(aq)$ rate law is $r = K[Cl_2][H_2S]$
then which of these mechanism is/are consistent with this rate law
$(A)\, H_2S \rightleftharpoons H^+ + HS^-$ (fast)
$Cl_2 + HS^-\to 2Cl^-+ H^+ + S$ (slow)
$(B)\, Cl_2 + H_2S \to H^+ + Cl^-+ Cl^+ + HS^-$ (slow)
$Cl^+ + HS^-\to H^+ + Cl^-+ S$ (fast)
Select the rate law that corresponds to the data shown for the following reaction $A+ B\to C$
Expt. No. | $(A)$ | $(B)$ | Initial Rate |
$1$ | $0.012$ | $0.035$ | $0.10$ |
$2$ | $0.024$ | $0.070$ | $0.80$ |
$3$ |
$0.024$ |
$0.035$ | $0.10$ |
$4$ | $0.012$ | $0.070$ | $0.80$ |
Differential form of the rate equation is
$\frac{{dx}}{{dt}} = k\left[ P \right]{\left[ Q \right]^{0.5}}{\left[ R \right]^{0.5}}$
Which statement about the above equation is wrong?
In the reaction $A + B \to $ Products, if $B$ is taken in excess, then it is an example of