- Home
- Standard 11
- Mathematics
For a scholarship, atmost $n$ candidates out of $2n+1$ can be selected. If the number of different ways of selection of atleast one candidate for scholarship is $63$, then maximum number of candidates that can be selected for the scholarship is -
$2$
$3$
$4$
$5$
Solution
$ ^{2n + 1}{C_1}{ + ^{2n + 1}}{C_2} + ……{ + ^{2n + 1}}{C_n} = 63. \hfill $
Also hfill
$ ^{2n + 1}{C_0}{ + ^{2n + 1}}{C_1} + ……{ + ^{2n + 1}}{C_n}{ + ^{2n + 1}}{C_{n + 1}} + …..{ + ^{2n + 1}}{C_{2n + 1}} = {2^{2n + 1}} \hfill $
$ \Rightarrow 2 + 2{(^{2n + 1}}{C_1}{ + ^{2n + 1}}{C_2} + …..{ + ^{2n + 1}}{C_n}) = {2^{2n + 1}} \hfill $
$ { \Rightarrow ^{2n + 1}}{C_1}{ + ^{2n + 1}}{C_2} + …..{ + ^{2n + 1}}{C_n} = {2^{2n}} – 1 \hfill $
$ \therefore {2^{2n}} – 1 = 63 \Rightarrow {2^{2n}} = 64 = {2^6} \hfill $
$\Rightarrow n = 3 \hfill]$