6.Permutation and Combination
normal

For a scholarship, atmost $n$ candidates out of $2n+1$ can be selected. If the number of different ways of selection of atleast one candidate for scholarship is $63$, then maximum number of candidates that can be selected for the scholarship is -

A

$2$

B

$3$

C

$4$

D

$5$

Solution

$  ^{2n + 1}{C_1}{ + ^{2n + 1}}{C_2} + ……{ + ^{2n + 1}}{C_n} = 63. \hfill $
  Also hfill 
 $ ^{2n + 1}{C_0}{ + ^{2n + 1}}{C_1} + ……{ + ^{2n + 1}}{C_n}{ + ^{2n + 1}}{C_{n + 1}} + …..{ + ^{2n + 1}}{C_{2n + 1}} = {2^{2n + 1}} \hfill $
$   \Rightarrow 2 + 2{(^{2n + 1}}{C_1}{ + ^{2n + 1}}{C_2} + …..{ + ^{2n + 1}}{C_n}) = {2^{2n + 1}} \hfill $
 $ { \Rightarrow ^{2n + 1}}{C_1}{ + ^{2n + 1}}{C_2} + …..{ + ^{2n + 1}}{C_n} = {2^{2n}} – 1 \hfill $
$  \therefore {2^{2n}} – 1 = 63 \Rightarrow {2^{2n}} = 64 = {2^6} \hfill $
   $\Rightarrow n = 3 \hfill]$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.