अवकल समीकरण $x \frac{d y}{d x}+2 y = x ^{2}( x \neq 0)$ का हल जिसके लिए $y(a)=1$ है, है :
$p \leftrightarrow q$
$\sim p\, \vee \,\sim q$
$\sim p\, \wedge \,\sim q$
$p\, \wedge \,q$
निम्न में से कौनसा कथन : “वास्तविक संख्या या तो परिमेय है या अपरिमेय” के तार्किक समतुल्य है
दो कथनों
$( S 1):( p \rightarrow q ) \vee(\sim q \rightarrow p )$ एक पुनरूक्ति है।
$( S 2):( p \wedge \sim q ) \wedge(\sim p \vee q )$ एक हेत्वाभास (fallacy) है। तब
कौन सा वेन आरेख कथन “सभी विद्यार्थी मेहनती है” की सत्यता को दर्शाता है
जहाँ $U$ = मानवों का समष्टीय समुच्चय, $S$ = सभी विद्यार्थियों का समुच्चय, $H$ = सभी मेहनती का समुच्चय.
माना $*, \square \in\{\wedge, \vee\}$ इस प्रकार है कि बूलीय व्यंजक $(\mathrm{p} * \sim \mathrm{q}) \Rightarrow(\mathrm{p} \square \mathrm{q})$ एक पुनरूक्ति है। तो
$\sim (p \vee q) \vee (\sim p \wedge q)$ तार्किक समतुल्य है