- Home
- Standard 11
- Mathematics
Mathematical Reasoning
hard
अवकल समीकरण $x \frac{d y}{d x}+2 y = x ^{2}( x \neq 0)$ का हल जिसके लिए $y(a)=1$ है, है :
A
$p \leftrightarrow q$
B
$\sim p\, \vee \,\sim q$
C
$\sim p\, \wedge \,\sim q$
D
$p\, \wedge \,q$
(JEE MAIN-2019)
Solution
$ \sim \left( {p \vee \left( { \sim p \wedge q} \right)} \right)$
$ = \sim p \wedge \sim \left( { \sim p \wedge q} \right)$
$ = \sim p \wedge \left( {p \vee \sim q} \right)$
$ = \left( { \sim p \wedge p} \right) \vee \left( { \sim p \wedge \sim q} \right)$
$ = c \vee \left( { \sim p \wedge \sim q} \right)$
$ = \left( { \sim p \wedge \sim q} \right)$
Standard 11
Mathematics