Mathematical Reasoning
hard

अवकल समीकरण $x \frac{d y}{d x}+2 y = x ^{2}( x \neq 0)$ का हल जिसके लिए $y(a)=1$ है, है :

A

$p \leftrightarrow q$

B

$\sim p\, \vee \,\sim q$

C

$\sim p\, \wedge \,\sim q$

D

$p\, \wedge \,q$

(JEE MAIN-2019)

Solution

$ \sim \left( {p \vee \left( { \sim p \wedge q} \right)} \right)$

$ =  \sim p \wedge  \sim \left( { \sim p \wedge q} \right)$

$ =  \sim p \wedge \left( {p \vee  \sim q} \right)$

$ = \left( { \sim p \wedge p} \right) \vee \left( { \sim p \wedge  \sim q} \right)$

$ = c \vee \left( { \sim p \wedge  \sim q} \right)$

$ = \left( { \sim p \wedge  \sim q} \right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.