For any two statements $p$ and $q,$ the negation of the expression $p \vee ( \sim p\, \wedge \,q)$ is 

  • [JEE MAIN 2019]
  • A

    $p \leftrightarrow q$

  • B

    $\sim p\, \vee \,\sim q$

  • C

    $\sim p\, \wedge \,\sim q$

  • D

    $p\, \wedge \,q$

Similar Questions

Negation of statement "If I will go to college, then I will be an engineer" is -

Which of the following pairs are not logically equivalent ?

If the truth value of the Boolean expression $((\mathrm{p} \vee \mathrm{q}) \wedge(\mathrm{q} \rightarrow \mathrm{r}) \wedge(\sim \mathrm{r})) \rightarrow(\mathrm{p} \wedge \mathrm{q}) \quad$ is false then the truth values of the statements $\mathrm{p}, \mathrm{q}, \mathrm{r}$ respectively can be:

  • [JEE MAIN 2021]

The negation of the statement $q \wedge \left( { \sim p \vee  \sim r} \right)$

The compound statement $(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P}) \Rightarrow \mathrm{Q}$ is equivalent to:

  • [JEE MAIN 2021]