$m$ અને $n$ એ બંને $1$ કરતાં મહત્તમ પૂર્ણાંકો છે નીચેના વિધાનો માટે, જો
$P$ : $m$ એ $n$ વડે વિભાજ્ય છે
$Q$ : $m$ એ $n^2$ વડે વિભાજ્ય છે
$R$ : $m$ એ અવિભાજય સંખ્યા છે તો સાચું વિધાન .
$Q \wedge R \to P$
$P \wedge Q \to R$
$Q \to R$
$Q \to P$
જો $p$ અને $q$ એ બે વિધાનો હોય તો નીચેનામાંથી ક્યું વિધાન $p \to q$ ને તાર્કિક રીતે સમાન થાય
કોઈ ત્રણ સાદાં વિધાનો $p, q, r$ માટે વિધાન $(p \wedge q) \vee (q \wedge r)$ ત્યારે જ સાચું હોય જ્યારે....
આપેલ વિધાનનું નિષેધ કરો : -
"દરેક $M\,>\,0$ માટે $x \in S$ અસ્તિત્વ ધરાવે કે જેથી $\mathrm{x} \geq \mathrm{M}^{\prime \prime} ?$
વિધાન$A \rightarrow( B \rightarrow A )$ એ ...............ને સમાનાર્થી છે.
બુલિયન સમીકરણ $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ =