For photo-electric effect with incident photon wavelength $\lambda$, the stopping potential is $V _0$. Identify the correct variation$(s)$ of $V _0$ with $\lambda$ and $1 / \lambda$. $Image$

224167-q

  • [IIT 2015]
  • A

    $(B,D)$

  • B

    $(B,C)$

  • C

    $(A,C)$

  • D

    $(A,D)$

Similar Questions

If the energy of a photon corresponding to a wavelength of $6000 \mathring A$ is $3.32 \times {10^{ - 19}}J$, the photon energy for a wavelength of $4000 \mathring A$ will be ............ $eV$ 

A photon in motion has a mass

In an accelerator experiment on high-energy collisions of electrons with positrons, a certain event is interpreted as annihilation of an electron-positron pair of total energy $10.2\; BeV$ into two $\gamma$ -rays of equal energy. What is the wavelength associated with each $\gamma$ -ray? $\left(1\; BeV =10^{9}\; eV \right)$

The incident photon involved in the photoelectric effect experiment.

Two sources of light emit with a power of $200 \mathrm{~W}$. The ratio of number of photons of visible light emitted by each source having wavelengths $300\  \mathrm{nm}$ and $500 \mathrm{~nm}$ respectively, will be :

  • [JEE MAIN 2024]