3 and 4 .Determinants and Matrices
medium

For some $a, b$, let $f(x)=\left|\begin{array}{ccc}a+\frac{\sin x}{x} & 1 & b \\ a & 1+\frac{\sin x}{x} & b \\ a & 1 & b+\frac{\sin x}{x}\end{array}\right|, \quad x \neq 0$, $\lim _{ x \rightarrow 0} f ( x )=\lambda+\mu a + vb$. Then $(\lambda+\mu+v)^2$ is equal to:

A$25$
B$9$
C$36$
D$16$
(JEE MAIN-2025)

Solution

$\lim _{x \rightarrow 0} f(x)=\left|\begin{array}{ccc}a+1 & 1 & b \\ a & 1+1 & b \\ a & 1 & b+1\end{array}\right|$
$=(a+1)(2(b+1)-b)+1(a b-a(b+1))+b a$
$=(a+1)(b+2)-a+a b$
$=b+a+2=\lambda+\mu a+v b$
$\lambda=2, \mu=1, v=1 \Rightarrow(\lambda+\mu+v)^2=16$
Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.