3 and 4 .Determinants and Matrices
easy

Find equation of line joining $(1,2)$ and $(3,6)$ using determinates

A

$y=2 x$

B

$y=3 x$

C

$y=4 x+7$

D

$y=2 x+9$

Solution

Let $P(x, y)$ be any point on the line joining points $A(1,2)$ and $B(3,6) .$ Then, the points $A,=$ and $P$ are collinear. Therefore, the area of triangle $ABP$ will be zero.

$\therefore \frac{1}{2}\left|\begin{array}{lll}1 & 2 & 1 \\ 3 & 6 & 1 \\ x & y & 1\end{array}\right|=0$

$\Rightarrow \frac{1}{2}[1(6-y)-2(3-x)+1(3 y-6 x)]=0$

$\Rightarrow 6-y-6+2 x+3 y-6 x=0$

$\Rightarrow 2 y-4 x=0$

$\Rightarrow y=2 x$

Hence, the equation of the line joining the given points is $y=2 x$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.