For the following parallel chain reaction. What will be that value of overall half-life of $A$ in minutes ?

Given that  $\left[ {\frac{{{{\left[ B \right]}_t}}}{{{{[C]}_t}}} = \frac{{16}}{9}} \right]$

$A\,\xrightarrow{{{K_1}\, = \,2\, \times \,{{10}^{^{ - 3}\,}}{S^{ - 1}}}}4B$

$A\to C$

  • A

    $693$

  • B

    $\frac{693}{210}$

  • C

    $\frac{693}{30}$

  • D

    $\frac{693}{7}$

Similar Questions

The rate constant for the reaction, $2{N_2}{O_5} \to 4N{O_2}$ $ + {O_2}$ is $3 \times {10^{ - 5}}{\sec ^{ - 1}}$. If the rate is $2.40 \times {10^{ - 5}}\,mol\,\,litr{e^{{\rm{ - 1}}}}{\sec ^{ - 1}}$. Then the concentration of ${N_2}{O_5}$ (in mol litre $^{-1}$) is

  • [IIT 2000]

Following is the rate constant of reaction what is the overall order of reaction ?

$(a)$ $6.66 \times 10^{-3} \,s ^{-1}$

$(b)$ $4.5 \times 10^{-2} \,mol ^{-1} \,L \,s ^{-1}$

The order of a reaction which has the rate expression $\frac{{dc}}{{dt}} = K{[E]^{3/2}}{[D]^{3/2}}$ is

The following data was obtained for chemical reaction given below at $975\, \mathrm{~K}$.

$2 \mathrm{NO}_{(\mathrm{g})}+2 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

 

$[NO]$

$\mathrm{mol} \mathrm{L}^{-1}$

${H}_{2}$

$\mathrm{mol} \mathrm{L}^{-1}$

Rate 

$\mathrm{mol}L^{-1}$ $s^{-1}$

$(A)$ $8 \times 10^{-5}$ $8 \times 10^{-5}$ $7 \times 10^{-9}$
$(B)$ $24 \times 10^{-5}$ $8 \times 10^{-5}$ $2.1 \times 10^{-8}$
$(C)$ $24 \times 10^{-5}$ $32 \times 10^{-5}$ $8.4 \times 10^{-8}$

The order of the reaction with respect to $\mathrm{NO}$ is ..... .

  • [JEE MAIN 2021]

Reaction $2A + B \to$  product,  rate law is $\frac{{ - d[A]}}{{dt}}\, = \,K[A].$ At a time when $t\, = \,\frac{{{t_{1/2}}}}{{\ln\,2}},$ concentration of the reactant is