For the frequency distribution :

Variate $( x )$ $x _{1}$ $x _{1}$ $x _{3} \ldots \ldots x _{15}$
Frequency $(f)$ $f _{1}$ $f _{1}$ $f _{3} \ldots f _{15}$

where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and

$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be 

  • [JEE MAIN 2020]
  • A

    $2$

  • B

    $1$

  • C

    $4$

  • D

    $6$

Similar Questions

The following values are calculated in respect of heights and weights of the students of a section of Class $\mathrm{XI}:$

  Height Weight
Mean $162.6\,cm$ $52.36\,kg$
Variance $127.69\,c{m^2}$ $23.1361\,k{g^2}$

Can we say that the weights show greater variation than the heights?

Let $x_1, x_2,........,x_n$ be $n$ observations such that $\sum {{x_i}^2 = 300} $ and $\sum {{x_i} = 60} $ on value of $n$ among the following is

Let $9 < x_1 < x_2 < \ldots < x_7$ be in an $A.P.$ with common difference $d$. If the standard deviation of $x_1, x_2 \ldots$, $x _7$ is $4$ and the mean is $\overline{ x }$, then $\overline{ x }+ x _6$ is equal to:

  • [JEE MAIN 2023]

The number of values of $a \in N$ such that the variance of $3,7,12 a, 43-a$ is a natural number is  (Mean $=13$)

  • [JEE MAIN 2022]

The standard deviation of $25$ numbers is $40$. If each of the numbers is increased by $5$, then the new standard deviation will be