For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be
$2$
$1$
$4$
$6$
The following values are calculated in respect of heights and weights of the students of a section of Class $\mathrm{XI}:$
Height | Weight | |
Mean | $162.6\,cm$ | $52.36\,kg$ |
Variance | $127.69\,c{m^2}$ | $23.1361\,k{g^2}$ |
Can we say that the weights show greater variation than the heights?
Let $x_1, x_2,........,x_n$ be $n$ observations such that $\sum {{x_i}^2 = 300} $ and $\sum {{x_i} = 60} $ on value of $n$ among the following is
Let $9 < x_1 < x_2 < \ldots < x_7$ be in an $A.P.$ with common difference $d$. If the standard deviation of $x_1, x_2 \ldots$, $x _7$ is $4$ and the mean is $\overline{ x }$, then $\overline{ x }+ x _6$ is equal to:
The number of values of $a \in N$ such that the variance of $3,7,12 a, 43-a$ is a natural number is (Mean $=13$)
The standard deviation of $25$ numbers is $40$. If each of the numbers is increased by $5$, then the new standard deviation will be