If the mean and variance of the following data:
$6,10,7,13, a, 12, b, 12$ are 9 and $\frac{37}{4}$ respectively, then $(a-b)^{2}$ is equal to:
$12$
$24$
$16$
$32$
Let in a series of $2 n$ observations, half of them are equal to $a$ and remaining half are equal to $-a.$ Also by adding a constant $b$ in each of these observations, the mean and standard deviation of new set become $5$ and $20 ,$ respectively. Then the value of $a^{2}+b^{2}$ is equal to ....... .
The mean and standard deviation of $20$ observations are found to be $10$ and $2$ respectively. On rechecking, it was found that an observation $8$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
If it is replaced by $12$
If the mean and variance of the frequency distribution
$x_i$ | $2$ | $4$ | $6$ | $8$ | $10$ | $12$ | $14$ | $16$ |
$f_i$ | $4$ | $4$ | $\alpha$ | $15$ | $8$ | $\beta$ | $4$ | $5$ |
are $9$ and $15.08$ respectively, then the value of $\alpha^2+\beta^2-\alpha \beta$ is $............$.
Mean of $5$ observations is $7.$ If four of these observations are $6, 7, 8, 10$ and one is missing then the variance of all the five observations is
Consider a set of $3 n$ numbers having variance $4.$ In this set, the mean of first $2 n$ numbers is $6$ and the mean of the remaining $n$ numbers is $3.$ A new set is constructed by adding $1$ into each of first $2 n$ numbers, and subtracting $1$ from each of the remaining $n$ numbers. If the variance of the new set is $k$, then $9 k$ is equal to .... .