For the non - stoichimetre reaction $2A + B \rightarrow C + D,$ the following kinetic data were obtained in three separate experiments, all at $298\, K.$
Initial Concentration $(A)$ |
Initial Concentration $(A)$ |
Initial rate of formation of $C$ $(mol\,L^{-1}\,s^{-1})$ |
$0.1\,M$ | $0.1\,M$ | $1.2\times 10^{-3}$ |
$0.1\,M$ | $0.2\,M$ | $1.2\times 10^{-3}$ |
$0.2\,M$ | $0.1\,M$ | $2.4 \times 10^{-3}$ |
The rate law for the formation of $C$ is :
$\frac{{dc}}{{dt}} = k[A][B]$
$\frac{{dc}}{{dt}} = k[A]^2[B]$
$\frac{{dc}}{{dt}} = k[A][B]^2$
$\frac{{dc}}{{dt}} = k[A]$
The rate of reaction $A + 2B \to 3C$ becomes $72\, times$ when concentration of $A$ is tripled and concentration of $B$ is doubled then the order of reaction with respect to $A$ and $B$ respectively is
Diazonium salt decomposes as ${C_6}{H_5}N_2^ + C{l^ - } \to {C_6}{H_5}Cl + {N_2}$ At ${0\,^o}C$, the evolution of ${N_2}$ becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is
The rate constant for the reaction, $2N_2O_5 \to 4NO_2 + O_2$ is $3.0\times 10^{- 4}\,s^{-1}$ . If start made with $1.0\,mol\,L^{-1}$ of $N_2O_5$, calculate the rate of formation of $NO_2$ at the moment of the reaction when concentration of $O_2$ is $0.1\, mol\, L^{-1}$.
The given data are for the reaction :
$2NO(g) + Cl_2(g) \to 2NOCl(g)$ at $298\, K$
$[Cl_2]$ $[NO]$ Rate $(mol\, L^{-1} \sec^{-1})$
$I$ $0.05\, M$ $0.05\,M$ $1 \times 10^{-3}$
$II$ $0.15\, M$ $0.05\,M$ $3 \times 10^{-3}$
$III$ $0.05\, M$ $0.15\,M$ $9 \times 10^{-3}$
The rate law for the reaction is
Consider the kinetic data given in the following table for the reaction $A + B + C \rightarrow$ Product.
Experiment No. | $\begin{array}{c}{[ A ]} \\ \left( mol dm ^{-3}\right)\end{array}$ | $\begin{array}{c}{[ B ]} \\ \left( mol dm ^{-3}\right)\end{array}$ | $\begin{array}{c}{[ C]} \\ \left( mol dm ^{-3}\right)\end{array}$ | Rate of reaction $\left( mol dm ^{-3} s ^{-1}\right)$ |
$1$ | $0.2$ | $0.1$ | $0.1$ | $6.0 \times 10^{-5}$ |
$2$ | $0.2$ | $0.2$ | $0.1$ | $6.0 \times 10^{-5}$ |
$3$ | $0.2$ | $0.1$ | $0.2$ | $1.2 \times 10^{-4}$ |
$4$ | $0.3$ | $0.1$ | $0.1$ | $9.0 \times 10^{-5}$ |
The rate of the reaction for $[ A ]=0.15 mol dm ^{-3},[ B ]=0.25 mol dm ^{-3}$ and $[ C ]=0.15 mol dm ^{-3}$ is found to be $Y \times 10^{-5} mol dm d ^{-3} s ^{-1}$. The value of $Y$ i. . . . . . .