Force between two identical spheres charged with same charge is $F$. If $75\%$ charge of one sphere is transfered to the other sphere then the new force will be
$\frac{{15F}}{{16}}$
$\frac{{3F}}{{4}}$
$\frac{{5F}}{{16}}$
$\frac{{7F}}{{16}}$
Two charges $-\mathrm{q}$ each are fixed separated by distance $2\mathrm{d}$. A third charge $\mathrm{d}$ of mass $m$ placed at the midpoint is displaced slightly by $x (x \,<\,<\, d)$ perpendicular to the line joining the two fixed charged as shown in figure. Show that $\mathrm{q}$ will perform simple harmonic oscillation of time period. $T =\left[\frac{8 \pi^{3} \epsilon_{0} m d^{3}}{q^{2}}\right]^{1 / 2}$
The ratio of electrostatic and gravitational forces acting between electron and proton separated by a distance $5 \times {10^{ - 11}}\,m,$ will be (Charge on electron $=$ $1.6 \times 10^{-19}$ $C$, mass of electron = $ 9.1 \times 10^{-31}$ $kg$, mass of proton = $1.6 \times {10^{ - 27}}\,kg,$ $\,G = 6.7 \times {10^{ - 11}}\,N{m^2}/k{g^2})$
What is the net force on a $Cl^{-}$ placed at the centre of the bcc structure of $CsCl$
Two identical conducting spheres $\mathrm{P}$ and $\mathrm{S}$ with charge $Q$ on each, repel each other with a force $16 \mathrm{~N}$. A third identical uncharged conducting sphere $\mathrm{R}$ is successively brought in contact with the two spheres. The new force of repulsion between $\mathrm{P}$ and $\mathrm{S}$ is :
$(a)$ Two insulated charged copper spheres $A$ and $B$ have their centres separated by a distance of $50 \;cm$. What is the mutual force of electrostatic repulsion if the charge on each is $6.5 \times 10^{-7}\; C?$ The radii of $A$ and $B$ are negligible compared to the distance of separation.
$(b)$ What is the force of repulsion if each sphere is charged double the above amount, and the distance between them is halved?