Four charges are placed at the circumference of a dial clock as shown in figure. If the clock has only hour hand, then the resultant force on a charge $q_0$ placed at the centre, points in the direction which shows the time as:
$1.30$
$7.30$
$4.30$
$10.30$
A charged particle with charge $q$ and mass $m$ starts with an initial kinetic energy $K$ at the centre of a uniformly charged spherical region of total charge $Q$ and radius $R$. Charges $q$ and $Q$ have opposite signs. The spherically charged region is not free to move and kinetic energy $K$ is just sufficient for the charge particle to reach boundary of the spherical charge. How much time does it take the particle to reach the boundary of the region?
A parallel plate capacitor with air between the plates has a capacitance of $9\, pF$. The separation between its plates is $'d'$. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $K_1=3$ and thickness $\frac{d}{3}$ while the other one has dielectric constant $K_2 = 6$ and thickness $\frac{2d}{3}$. Capacitance of the capacitor is now....$pF$
A parallel plate condenser has a uniform electric field $E(V/m)$ in the space between the plates. If the distance between the plates is $d(m)$ and area of each plate is $A(m^2)$, then the energy (joules) stored in the condenser is
A wheel having mass $m$ has charges $+q$ and $-q$ on diametrically opposite points. It remains in equilibrium on a rough inclined plane in the presence of uniform horizontal electric field $E =$
Capacity of an isolated sphere is increased $n$ times when it is enclosed by an earthed concentric sphere. The ratio of their radii is