If potential at centre of uniformaly charged ring is $V_0$ then electric field at its centre will be (assume radius $=R$)
$\frac{{{V_o}}}{R}$
$\frac{{{3V_o}}}{2R}$
$\frac{{{V_o}}}{2R}$
Zero
A parallel plate capacitor with air between the plates has a capacitance of $9\, pF$. The separation between its plates is $'d'$. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $K_1=3$ and thickness $\frac{d}{3}$ while the other one has dielectric constant $K_2 = 6$ and thickness $\frac{2d}{3}$ . Capacitance of the capacitor is now.........$pF$
Two spherical conductors $B$ and $C$ having equal radii and carrying equal charges in them repel each other with a force $F$ when kept apart at some some distance. $A$ third spherical conductor having same radius as that of $B$ but uncharged, is brought in contact with $B$, then brought in contact with $C$ and finally removed away from both. The new force of repulsion between $B$ and $C$ is-
An insulator plate is passed between the plates of a capacitor. The the displacement current
An electric point charge $10^{-3}\,\mu C$ is placed at the origin $(0, 0)$ of $X-Y$ co- ordinate system. Two points $A$ and $B$ are situated at $(\sqrt 2, \sqrt 2)$ and $(2, 0)$ respectively. The potential difference between the points $A$ and $B$ will be.....$volt$
Two identical balls having like charges and placed at a certain distance apart repel each other with a certain force. They are brought in contact and then moved apart to a distance equal to half their initial separation. The force of repulsion between them increases $4.5$ times in comparison with the initial value. The ratio of the initial charges of the balls is