Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame in $xy$ plane as shown in figure. The plane of the frame is perpendicular to $z-$ axis. If a $-ve$ point charges is placed at a distance $z$ away from the above frame $(z << L)$ then
$-ve$ charge oscillates along the $z-$ axis
it moves away from the frame
it moves slowly towards the frame and stays in the plane of the frame
it passes through the frame only once
In a certain region of space, there exists a uniform electric field of value $2\times10^2\hat k\, Vm^{-1}$. A rectangular coil of dimension $10\, cm\times20\, cm$ is placed in the $xy$ plane. The electric flux through the coil is......$Vm$
A charged particle with charge $q$ and mass $m$ starts with an initial kinetic energy $K$ at the centre of a uniformly charged spherical region of total charge $Q$ and radius $R$. Charges $q$ and $Q$ have opposite signs. The spherically charged region is not free to move and kinetic energy $K$ is just sufficient for the charge particle to reach boundary of the spherical charge. How much time does it take the particle to reach the boundary of the region?
A parallel plate condenser has a uniform electric field $E(V/m)$ in the space between the plates. If the distance between the plates is $d(m)$ and area of each plate is $A(m^2)$, then the energy (joules) stored in the condenser is
A wheel having mass $m$ has charges $+q $ and $-q$ on diametrically opposite points. It remains in equilibrium on a rough inclined plane in the presence of uniform vertical electric field $E =$
Four capacitors with capacitances $C_1 = 1\,μF, C_2 = 1.5\, μF, C_3 = 2.5\, μF$ and $C_4 = 0.5\, μF$ are connected as shown and are connected to a $30\, volt$ source. The potential difference between points $B$ and $A$ is....$V$