From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants.
$(i)$ $3 NO ( g ) \rightarrow N _{2} O$ $(g)$ Rate $=k[ NO ]^{2}$
$(i)$ Given rate $=k[ NO ]^{2}$
Therefore, order of the reaction $=2$
Dimension of $k=\frac{\text { Rate }}{[ NO ]^{2}}$
$=\frac{\operatorname{mol}\, L^{-1} \,s^{-1}}{\left(\operatorname{mol}\, L^{-1}\right)^{2}}$
$=\frac{\operatorname{mol}\, L^{-1} \,s^{-1}}{\operatorname{mol}^{2} \,L^{-2}}$
$=L \,m o l^{-1}\, s^{-1}$
The reaction $2{H_2}{O_2} \to 2{H_2}O + {O_2}$ is a
For the reaction
$2H_2 + 2NO \to N_2 + 2H_2O$
the following mechanism has been proposed
$(i)$ $2NO \rightleftharpoons N_2O_2\,$ (fast)
$(ii)$ $N_2O_2 + H_2 \xrightarrow{{{k_2}}} N_2O + H_2O\,$ (slow)
$(iii)$ $N_2O + H_2 \to N_2 + H_2O\,$ (fast)
then what will be the rate law of this reaction ?
During Kinetic study of reaction $2 A+B \rightarrow C+D$, the following results were obtained :
$A[M]$ | $B[M]$ |
initial rate of formation of $D$ |
|
$i$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
$ii$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
$ii$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
$iv$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
Based on above data, overall order of the reaction is $\qquad$
For the reaction
$2 \mathrm{H}_{2}(\mathrm{g})+2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
the observed rate expression is, rate $=\mathrm{k}_{\mathrm{f}}[\mathrm{NO}]^{2}\left[\mathrm{H}_{2}\right] .$ The rate expression of the reverse reaction is
For a reaction $A+ B\to $ Products, the rate law is - Rate $=$ $k\,[A]\, [B]^{\frac {3}{2}}$ . Can the reaction be an elementary reaction ? Explain.