1. Electric Charges and Fields
medium

જો બંધ સપાટીનું કુલ ફલક્સ શૂન્ય જણાય તો તે બંધ સપાટી પર રહેલો કુલ વિધુતભાર શૂન્ય છે.

Option A
Option B
Option C
Option D

Solution

બંધ સપાટીમાંથી પસાર થતું કુલ વિદ્યુત ફલક્સ શૂન્ય છે તેથી તે સપાટી વડે કોઈ વિદ્યુતભાર ધેરાતો નથી જે આકૃતિમાં દર્શાવ્યું છે.

ધારોકે, સમાન વિદ્યુતક્ષેત્ર $\overrightarrow{ E }$ માં બંધ નળાકાર એવી રીતે મૂકેલો છે કे જેથી તેની અક્ષ સમાન વિદ્યુતક્ષેત્રને સમાંતર રહે. નળાકારના વર્તુળાકાર આડછેદ $1$ અને $2$ માંથી પસાર થતું ફલક્સ ધારો કે અનુક્રમે $\phi_{1}$ અને $\phi_{2}$ છે અને નળાકારની વક્ર સપાટીમાંથી પસાર થતું ફલક્સ $\phi_{3}$ છે. જે નીચે આકૃતિમાં દર્શાવ્યું છે.

$1$ ભાગ આગળ વિદ્યુતક્ષેત્ર અને ક્ષેત્રફળ સદિશ પરસ્પર વિટુદ્ધ દિશામાં છે અને $2$ ભાગ પાસે વિદ્યુતક્ષેત્ર અને ક્ષેત્રફળ સદિશ એકજ દિશામાં છે તથા $3$ ભાગ આગળ વિદ્યુતક્ષેત્ર અને ક્ષેત્રફળ સદિશ પરસ્પર લંબ છે.

આથી દરેક ભાગમાંથી અનુક્રમે પસાર થતું ફલક્સ,

$\phi_{1}=- ES _{1}, \phi_{2}= ES _{2}$ અને $\phi_{3}=0 \quad[\because \overrightarrow{ E } \perp \overrightarrow{ S }]$

જ્યાં $S _{1}$ અને $S _{2}$ એ અનુક્રમે $1$ અને $2$ ભાગ પાસેના ક્ષેત્રફળ છે નળાકાર સમાન હોવાથી $S _{1}= S _{2}= S$ ધારો.

$\therefore$ નળાકારમાંથી પસાર થતું કુલ વિદ્યુત ફલક્સ,

$\phi=\phi_{1}+\phi_{2}+\phi_{3}$

$=- ES + ES +0$

$\therefore\phi=0$

આમ, બંધ નળાકારમાંથી પસાર થતું કુલ ફલક્સ શૂન્ય છે.

$\therefore$ ગોસના નિયમ પરથી $0=\frac{\Sigma q}{\epsilon_{0}}$

$\therefore \Sigma q=0$

એટલે કે નળાકારની બંધ સપાટીમાં રહેલો કુલ વિદ્યુતભાર શૂન્ય છે.

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.